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Abstract—Neuroimaging and genetic biomarkers have been
widely studied from discriminative perspectives towards
Alzheimer’s disease (AD) classification, since neuroanatomical
patterns and genetic variants are jointly critical indicators for
AD diagnosis. Generative methods, designed to model common
occurring patterns, could potentially advance the understand-
ing of this disease, but have not been fully explored for AD
characterization. Moreover, the introduction of a supervised
component into the generative process can constrain the model
for more discriminative characterization. In this study, we pro-
pose an original method based on supervised topic modeling to
characterize AD from a generative perspective, yet maintaining
discriminative power at differentiating disease populations. Our
topic modeling jointly exploits discretized image features and
categorical genetic features. Diagnostic information - cognitively
normal (CN), mild cognitive impairment (MCI) and AD - is
introduced as a supervision variable. Experimental results on the
ADNI cohort demonstrate that our model, while achieving com-
petitive discriminative performance, can discover topics revealing
both well-known and novel neuroanatomical patterns including
temporal, parietal and frontal regions; as well as associations
between genetic factors and neuroanatomical patterns.

Index Terms—Alzheimer’s disease, MRI, genetics, topic mod-
eling, mixed membership model, generative method.

I. INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease
with rising frequency in the global aging population. In AD,
cell death can result in regional atrophy in brain regions (e.g.
entorhinal cortex, hippocampus). The patterns of atrophy re-
vealed from structural MRI (sMRI) may correlate with differ-
ent symptoms or progression routes. The volumetric measures
of regions including entorhinal cortex and hippocampus [1],
[2] are common image biomarkers characterizing AD pathol-
ogy. AD also has substantial genetic heritability [3], such that
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genetic variants play an important role in AD progression.
The basic unit for a genetic variant is a single nucleotide
polymorphism (SNP), among which rs7412 and rs429358 are
well-known for AD [4]. While imaging and genetics both
provide important biomarkers to understand and diagnose AD,
they are very different in their representation. Inter-subject and
disease heterogeneity make this task even more challenging.
Topic modeling based on mixed membership models provides
a powerful methodological framework to capture homogeneity
and heterogeneity of different types of features and is well-
suited for high-dimensional data representations [5], [6].

Interactions between genetics and imaging, such as associa-
tions between certain SNPs and regional volumetric measures
calculated from sMRI, is gaining attention in the neuroimag-
ing community both in general population studies [7], [8]
and in AD studies [9], [10], and has been utilized for AD
classification [11]. Discriminative methods have been widely
studied for AD classification using sMRI data [12], [13],
[2], [14], and have been exploited for AD characterization
using sMRI and genetic data independently [15]. Generative
topic modeling opens up new ways to explicitly character-
ize the generative process and discover common occurring
patterns in AD populations, and could potentially advance
the understanding and early diagnosis of AD. A recent study
[16] identified atrophy patterns in AD patients using voxel-
based morphometry (VBM) and latent Dirichlet allocation
(LDA) [17], which is a classic unsupervised generative topic
model. Here they found some latent brain atrophy factors
that overlap with AD subtypes defined in a retrospective
neuropathology cohort [18]. However, such fully unsupervised
generative methods may lack the power of discovering pat-
terns of interest. Alternatively, one can introduce supervised
components into the model to exploit the advantages of both
generative and discriminative methods. A recent study [19]
applied such strategy using a diagnostic label to guide a joint
projection and sparse regression model to study brain-wide
and genome-wide associations for AD.

In AD characterization, evidences and features are ex-
ploited for subject stratification at different scales. At the
coarsest scale, subjects are assigned to diagnosis groups,
i.e. whether having AD, mild cognitive impairment (MCI)
or being cognitively normal (CN). Clinicians provide such
diagnosis by exploiting a comprehensive set of evidences such
as cognitive tests (e.g. MMSE, Mini-Mental State Exam [20])
image-based markers, and genetic variants. This grouping is
most commonly regarded as a “hard” assignment and can
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be exploited as a supervision for discriminative characteri-
zation using supervised learning methods. At a finer scale,
for subjects with AD, it is desirable to further define AD
subtypes associated with different mechanisms or at different
stages, which would likely benefit from different monitoring or
intervention options. In addition, within CN and MCI groups,
certain subjects will remain CN (or MCI), while others will
progress to AD [4]. This heterogeneity could potentially be
captured by biomarkers embedded in “micro”-genetics and
“macro”-image biomarkers [21]. However, this concept still
lacks consensus and is not included in routine clinical practice.
Such latent subtypes can be modeled via “soft” assignment or
mixed-membership. Supervised topic modeling [22], [23] is a
constructive extension of the unsupervised versions, and can
combine subject stratification at different scales for a more
robust and discriminative characterization.

In this study, we infer grouping of subjects from image
and genetic biomarkers and analyze the prevalent patterns that
emerge in the AD and MCI populations. We first investigate
supervised topic modeling by encoding “co-atrophy” patterns
of brain regions as “topics” and characterize AD with latent
neuroanatomical patterns using image features. We then jointly
model image and genetic features to discover jointly occurring
image and genetic AD biomarkers. We apply the proposed
model for three types of population stratification: 1) CN vs.
AD, 2) CN vs. MCI vs. AD and 3) MCI stable vs. MCI
progressing to AD subjects. Experimental results on the ADNI
cohort demonstrate that our model can discover topics that
reveal both well-known and novel neuroanatomical patterns
as well as associations between neuroanatomical and genetic
factors implicated in AD.

II. METHOD

We first introduce the problem setting of AD characteri-
zation using the classic LDA topic model formalism. Then
we introduce our supervised LDA (sLDA) model where the
diagnosis group information (e.g. CN vs. MCI vs. AD) is
integrated as a supervision variable to enable more discrimi-
native characterization. Graphical representations of these two
models are provided in Fig. 1.

A. Problem Setting in LDA

The LDA model is built on a bag-of-words representation
of the input observations. It analyzes data from a set of
documents d ∈ [1, ..., D] known as corpus, and characterizes
each document as a mixture of K topics β1:K , whereas
topics are defined via learning the probabilistic distribution of
possible words wd,n with n ∈ [1, ..., Nd] for each document
d. A Dirichlet prior is assumed for the topic proportions θd in
each document. And the topic assignment zd,n of each word
wd,n is assumed to be drawn from a multinomial distribution
parameterized by θd. The posterior distribution is modeled as
follows:

p(z,β,θ|w) ∝
Nd∏
n=1

D∏
d=1

p(wd,n|zd,n,β)p(zd,n|θd)
D∏

d=1

p(θd)
K∏
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Fig. 1: Graphical representations of the classic (unsupervised)
LDA model and the supervised LDA (sLDA) model. Hollow
circles denote latent variables, shaded circles denote observed
variables, solid squares denote hyper-parameters, arrows de-
note dependence relationship, and plates denote replicated
structures.

In our LDA setting for AD diagnosis, we use both image
features and genetic variants of individuals in the topic model-
ing. For image features, we use subcortical and cortical volume
and cortical thickness. The feature values are discretized via
binning, and are normalized by the maximum value in the total
training population to ensure equivalent contributions in the
model among different features. The genetic features encode
the number of alleles (A, T, C and G) for certain AD-related
SNPs (details in Section III-A) and take three values 0, 1 and
2, which represent the occurrence of the reference allele on
two homologous chromosomes [24].

We use an analogy to LDA previously applied for survey
analysis [25], where observations are answers to individual
questions. Each “document” is the collection of answers
by a single respondent. Topics encode common occurring
patterns of likely answers for each question (“word”), and
topic proportions represent how much each individual exhibits
those patterns. In our case, each subject is viewed as a survey
“document”. Brain regions and SNPs are the shared survey
questions, and the feature values (e.g. cortical thickness of
a certain brain region) are the answers. Hence, SNPs are
regarded as survey questions with three possible answers,
while image features are regarded as questions with preset
possible responses, where the variety depends on the binning
size. When using image features alone, atrophy patterns across
the brain regions are the “topics” to discover. When using
both image and SNP features, the “topics” are the integrated
patterns of brain region atrophy and jointly occurring genetic
variants. Each individual expresses the discovered topics at
variable levels.

B. Supervised LDA

The expressive power of the basic LDA to discover topics
comes at a price. The posterior distributions can exhibit many
local modes, resulting in very unstable solutions. Furthermore,
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Algorithm 1: Generative process for the sLDA model.
For each individual d ∈ [1, ..., D]:

a. Draw topic mixture proportions:
θd ∼ DirichletK(α),
where α is a hyper-parameter.

b. For each “word” n ∈ [1, ..., Nd] within individual d:
i. Draw a topic assignment:
zd,n ∼ Multinomial(θd).

ii. Draw an image / genetic feature:
wd,n ∼ Multinomial(βzd,n).

c. Draw the discrete response variable:
yd|zd,1:Nd

, µ ∼ softmax(µT z̄d)

where z̄d = 1
Nd

∑Nd

n=1 zd,n is the empirical frequency
vector of different topics in subject d, and µ is the
classification weighting matrix to be estimated.

unsupervised topic modeling lacks constraints to differentiate
disease populations, and is thus likely to find topics in the
data that are not reflective of the structures of interests [22].
In our preliminary experiments, we found the distribution of
topics learned with a classic unsupervised LDA model to be
nearly uniform. Therefore, we propose to introduce diagnostic
information into our model to generate topics with patterns
more discriminative of a disease state.

One simple way to incorporate diagnostic information is to
screen features with a univariate association model. A more
sophisticated approach is to integrate the diagnostic variable
into the graphical model, with a categorical distribution from
pre-defined categories (e.g. CN vs. MCI vs. AD), like other
variables. However, since diagnosis groups are inferred from
multiple biomarkers, this variable should be treated hierarchi-
cally differently. It could be treated as a response (at the end
of an arrow), or it could be used to inform the model (at the
head of an arrow). In this study, we treat diagnosis groups as
a response. Such a model is referred to as supervised LDA
model [22], [23].

The generative process using the proposed sLDA model
(Fig. 1) is detailed in Algorithm 1, where K topics β1:K
are discovered on D individuals, and each βk is a probability
vector over the image or genetic features. In the bag-of-words
representation, the count of each “word” is the feature value,
and Nd is the sum of all counts (feature values) per subject.
The hyper-parameter α is set as the inverse of the number of
topics 1/K [22]. Different from the original LDA model [17],
we treat β1:K as unknown constants to be estimated, rather
than random variables, as suggested in [22].

The model is estimated using a variational expectation-
maximization (EM) algorithm, where the E-step is the mean-
field variational inference of the posterior distribution of
latent variables z,θ, and the M-step is maximum likelihood
estimation of the parameters β and µ. In variational inference,
we first define a family of distributions over the latent variables
indexed by the variational parameters, and then estimate
the variational parameters to minimize the Kullback-Leibler
divergence between the variational distribution q and the exact
posterior distribution. This way, the inference problem is
turned into an optimization problem. The variational distri-

bution q with the optimal parameter is then an approximate
of the posterior distribution. For mean-field family, each latent
variable is independent and associated with its own variational
parameter. In our setting, the variational distribution of latent
variables z,θ is:

q(z,θ) =
Nd∏
n=1

D∏
d=1

q(zd,n|φd,n)
D∏

d=1

q(θd|γd) (2)

where φ is a multinomial variational parameter, γ is the
Dirichlet variational parameter. The estimated q(θd|γd) is used
to generate θ in the inference.

III. EXPERIMENTAL RESULTS

We tested our proposed sLDA topic modeling using either
image features only or combining image and genetic features,
for three supervised tasks. 1) Post hoc 2-class classification
task of CN vs. AD. Since these two groups are relatively
separable, this is often used as a proof-of-concept classification
task. 2) 3-class classification task (CN vs. MCI vs. AD),
which is more realistic but also more challenging. 3) 2-class
classification task of MCI stable (MCI-s) subjects vs. MCI
progressing to AD (MCI-p) subjects. This is a challenging
task but is important for understanding disease progression
and facilitating early diagnosis.

Our supervised sLDA estimates not only topics but also
classification labels. The classification accuracy is used to
select the optimal value for the number of topics K∗, and
results on topic proportions and compositions are reported
using this value.

A. Data and Preprocessing

Imaging and genetic data used for training and evaluation
are derived from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) (http://adni.loni.usc.edu/).

The imaging data used in this study consists of the T1-
weighted structural MRI scans from N = 820 individuals
enrolled in ADNI-1 study. We included scans for all the 820
subjects at baseline visit, and the subset of N = 740 scans
available from the first (month-6) follow-up visit. The number
of subjects in each diagnosis group at month-6 is different
from baseline due to conversion, reversion, or drop-out. The
MRI images were acquired using 1.5 T MRI scanners1. The
diagnosis labels are the cross-sectional diagnosis results at
scan time. Eighty-four neuroanatomical measures (cortical
thickness, cortical volume, subcortical volume), generated
from the FreeSurfer cross-sectional pipeline [26]2,3 are used
as image-derived features, after quantification into 10 regular
bins [16]. Since atrophy patterns are of interest for our tasks,
we use the opposite of the discretized values and then add a
constant to convert the features into positive values.

1More details can be found in: http://adni.loni.usc.edu/methods/mri-tool/
mri-analysis

2https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation
3https://surfer.nmr.mgh.harvard.edu/fswiki/SubcorticalSegmentation
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Fig. 2: Illustrations of topic proportions θ estimated from sLDA models, and the classification accuracies. (A) Classification
accuracy of diagnosis groups versus number of topics: (top) CN vs. AD classification task, (bottom) CN vs. MCI vs. AD
classification task. Grey arrows indicate the selected optimal numbers of topics K∗ in each setting. (B) Estimated topic
proportions θ (mean ± standard deviation) in different diagnosis groups when modeling with image features only or with both
image and genetic features. Numbers of topics are determined by the highest classification accuracy in Fig. 2 (A). Grey arrows
point to the discriminative topics that are visualized and interpreted later (as in Fig. 3 (A)).

TABLE I: Number of subjects extracted from ADNI with
respect to data type and diagnostic categories

Data
Diagnosis label

CN MCI AD Total
QC Genetics 193 339 165 697
MRI scans at baseline 230 399 191 820
MRI scans at month-6 219 332 189 740
MRI and QC genetics at baseline 193 339 165 697
MRI and QC genetics at month-6 185 291 161 637

TABLE II: Demographic information for the 820 baseline
subjects

Diagnosis CN MCI AD Total
# Subjects 230 399 191 820
Age±std 75.85±5.02 74.69±7.45 75.27±7.46 75.15±6.87
MMSE±std 29.11±1.00 27.03±1.77 23.31±2.04 26.75±2.67
Gender M/F 120/110 257/142 100/91 477/343

Genetic data is available for N = 757 of the 820
individuals. We selected 1) two SNPs (rs429358, rs7412)
that define APOE genotype, a major genetic risk fac-
tor for AD; and 2) all SNPs provided in the dataset
“ADNI cluster 01 forward 757LONI”. We preprocessed this
data following the steps carried out in [7] using PLINK [24].
Specifically, subjects with discordant sex information, large
missingness (> 10%), highly-related subjects in the study
(identity-by-state, IBS similarity > 0.2) were excluded. SNPs

with low occurrence, high missingness, deviating from Hardy-
Weinberg equilibrium were excluded. The level of similarity
of individual subjects was visualized using multi-dimensional
scaling (MDS) and only those with most similar genetic
ancestry were included [7].

The final set after preprocessing consists of N = 697
subjects (out of the 757) with quality controlled (QC) genetic
data including 556,165 SNPs. The SNPs were screened with
logistic regression using PLINK under additive assumption
with sex and baseline age as covariates and the AD versus
CN label as the discriminatory response. A total of twenty-
nine SNPs with p-value below 1e-4 were identified as AD-
related SNPs, among which, the most significant (p < 1e-6)
SNPs are rs429358 (one defining SNP of APOE genotype),
rs11857713 and rs4778636. For each SNP, the feature is the
number of reference alleles (risky alleles returned by the
logistic regression).

The data used in each diagnosis group is summarized
in TABLE I and TABLE II. The subjects in ADNI were
diagnosed based on comprehensive clinical dementia and MCI
evaluations. The detailed procedure can be found in the manual
provided by ADNI4. The N = 697 baseline subjects with both
genetic and image data are used to evaluate the sLDA models
with supervisions from diagnostic labels (CN, MCI and AD).

4https://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI
GeneralProceduresManual.pdf
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The cohort is split into training and test sets with a ratio of 4:1.
K-medoids undersampling is used during training to account
for group imbalance. The follow-up data (month-6) is used
to study the reproducibility of the discovered discriminative
topics. Finally, among the baseline subjects, we used the
N = 96 MCI-s subjects who stayed MCI during a follow-
up period of at least two years, and the N = 124 MCI-p
subjects who progressed to AD within two years, to train the
sLDA for characterizing MCI progression (training/test split
ratio = 4:1).

B. Optimal Numbers of Topics

We report results in Fig. 2 (A) using a total of 113 features
(84 image-based and 29 SNP-based). The number of topics
K is set per feature type and classification task, as the value
K∗ maximizing the average test sLDA classification accuracy.
Average accuracy is computed over 20 runs with different
random initializations of β1:K . We limited the range of tested
values for K to [6, 15] to limit under-fitting (K too low), over-
fitting (K too large), while maintaining interpretability [22].

Results in Fig. 2 (A) lead to the following parameterization:
with image features only, K∗=10 for the 2-class classification
of CN vs. AD, and K∗=9 for the 3-class classification of CN
vs. MCI vs. AD; with image and genetic features, K∗=13
for the 2-class classification of CN vs. AD, and K∗=14
for the 3-class classification of CN vs. MCI vs. AD. More
topics are needed when combining image and genetic features,
which was expected. Using image feature alone achieves an
accuracy of 88.0% for AD vs. CN classification. Adding
genetic biomarkers increases the classification accuracies from
88.0% to 89.4% in the CN vs. AD classification task, and from
48.4% to 52.2% in the CN vs. MCI vs. AD classification task.

We emphasize here that the goal of our sLDA learning is not
to beat fully-discriminative methods for disease classification,
but rather to investigate the possibility to discover AD-related
imaging and genetic patterns inside certain topics, while
optimizing the classification accuracy metric to set the number
of topics and ensure discriminancy.

C. Discriminative Topics and Features for Characterizing CN
vs. MCI vs. AD Populations

Topics learned with optimal discriminative power are now
investigated for interpretation. In Fig. 2 (B), we show the
average topic proportions θ within all baseline subjects in
different diagnosis groups, where the topics were learned using
the optimal number of topics K∗ associated with the highest
average test classification accuracy. For the four classification
setups, the most discriminative topics are shown in Fig. 3 (A),
encoded with their proportion values βkdisc of brain regions
and SNP features. For a classification setup, the most discrim-
inative topic kdisc is the topic that appears more frequently in
the disease than in the normal subjects and is identified as the
one exhibiting the most significant AD vs. CN distribution
differences, when evaluated via t-tests. The features (brain
regions or SNPs) that have the largest proportion values in
the selected discriminative topics are annotated in each plot.

Our results reveal a well-known neuro-anatomical circuit
implicated in AD [1], constituted of medial temporal lobe
structures including the hippocampus, entorhinal cortex (a
gateway between the hippocampus and neocortex), temporal
pole, and fusiform cortex. But in the CN vs. AD classification
tasks (Fig. 3 (A-1, A-3)), other temporal lobe regions are re-
vealed, including the inferior-, middle- and superior-temporal
cortices. When using both image and genetic features, Fig.
3 (A-3) reveals a pattern with temporal lobe structures and
SNP rs429358, a well-known genetic risk factor of AD [4]. In
the CN vs. MCI vs. AD classification tasks, a heterogeneous
pattern involving parietal (supramarginal gyrus) and temporal
lobes is revealed in Fig. 3 (A-2); in Fig. 3 (A-4), the anatomical
pattern involves temporal lobe regions, while the SNP with the
largest proportion in βkdisc is rs464385, associated with gene
PEX26 (peroxisomal biogenesis factor 26).

D. Reproducibility over Training Data

We further re-train the proposed sLDA model using both
image and genetic data in ADNI follow-up (month-6) visit,
to evaluate the consistency of the discovered discriminative
topics and features. We again exploited the stratification of 1)
CN vs. AD and 2) CN vs. MCI vs. AD diagnosis groups.

We set the number of topics K to the optimal value
identified with the baseline data as in Section III-C. The
discovered discriminative topics are shown in Fig.3 (B). Again,
medial temporal structures including hippocampus, entorhinal
cortex, temporal pole, and temporal cortex regions including
inferior-, middle-, superior-temporal cortices appear in the
discriminative topics. As with the vast majority of generative
topic modeling, our sLDA model has a non-convex objective
function, leading to some variability in discovered topics and
feature proportions when altering the training data. Nonethe-
less, we observe that the dominant brain regions and SNPs
in βkdisc maintain a high-level of consistency after re-training
with the follow-up data. When training for the CN vs. AD
classification task, Fig. 3 (B-1) reveals again a joint pattern
of temporal lobe structures and SNP rs429358. When training
for the CN vs. MCI vs. AD classification task, Fig. 3 (B-2)
reveals a pattern with temporal lobe structures and again SNP
rs464385.

E. Results on Characterizing MCI Conversion

The sLDA model was also tested to characterize the conver-
sion of MCI to AD within two years, which is important for
understanding disease progression. We compare modeling with
image features only versus incorporating genetic variants. The
optimal number of topics K∗ is again determined via optimal
classification accuracy. As shown in Fig. 4, when modeling
with image features only, the highest test classification accu-
racy is 70.9%, corresponding to K∗ = 13 topics. Incorporating
genetic variants slightly increased the test classification accu-
racy from 70.9% to 71.4%, with K∗ = 14 topics.

The discriminative topic with the most significant difference
in MCI-s vs. MCI-p is shown in Fig.3 (C). Besides temporal
lobe structures including parahippocampal gyrus, temporal
pole, middle temporal cortex, and inferior temporal cortex, we
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Fig. 3: Visualization of the most discriminative topics βkdisc (exhibiting most significant differences in AD vs. CN or MCI-s
vs. MCI-p) as feature proportion vectors returned by our sLDA models. In each plot, features with highest proportion values
are annotated. (A) Results with ADNI baseline data: (1) CN vs. AD task using image features; (2) CN vs. MCI vs. AD task
using image features; (3) CN vs. AD task using image and genetic features; (4) CN vs. MCI vs. AD task using image and
genetic features. (B) Results with ADNI month-6 (follow-up) data: (1) CN vs. AD task using image and genetic features; (2)
CN vs. MCI vs. AD task using image and genetic features. (C) Results for modeling MCI converters: (1) MCI-s vs. MCI-p
using image features; (2) MCI-s vs. MCI-p using image and genetic features. T-=Thickness, V-=Volume; L-=Left, R-=Right.
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Fig. 4: Classification accuracy of diagnosis groups MCI-stable
(MCI-s) vs. MCI-progressing to AD (MCI-p) versus number
of topics.

also observe the inclusion of frontal regions including caudal
middle frontal, superior frontal cortex, and SNP rs11582379
associated with gene GFI1 (growth factor independent 1
transcriptional repressor).

Collectively, the classification accuracy values with the
sLDA model and the corresponding optimal numbers of topics
K∗ are summarized in Table III.

TABLE III: Classification accuracy values and the correspond-
ing optimal numbers of topics (ACC%/K∗)

Task
Features

Image Image+genetics
CN vs. AD 88.0% / 10 89.4% / 13
CN vs. MCI vs. AD 48.4% / 9 52.2% / 14
MCIs vs. MCIp 70.9% / 13 71.4% / 14

IV. DISCUSSIONS AND CONCLUSIONS

In this study, we formulate an original sLDA generative
model to combine image and genetic features into discrimi-
native topics. The proposed model aims to identify, in topics
more prevalent in AD / MCI / MCI-p, neuroanatomical and
genetic patterns implicated in AD and in MCI progression. Our
results reveal, with confirmation on a reproducibility study,
associations between specific SNPs and image features from
the temporal lobe on the AD vs. CN classification task, and the
medial temporal lobe in the CN vs. MCI vs. AD classification
task. Our results on the MCI progression prediction identify
discriminative features in both frontal and temporal lobes,
which reflects the heterogeneity of MCI anatomical patterns
[27]. Regarding genetic variants, the SNPs rs429358 (APOE)
and rs464385 (PEX26) were identified as informative for
characterizing AD vs. CN in our results from both baseline and
follow-up data. The former is a well known AD-associated risk
factor [4]. While the latter is not well-documented in the AD
literature, a study [28] has suggested that peroxisomal deficit is
linked to Alzheimer’s disease. The SNP rs11582379 associated
with gene GFI1, was found to be informative for character-
izing MCI-s vs. MCI-p, whose link to AD, however, is not
previously reported. Similar to the discussion in Section III
D about reproducibility over training data, genetic biomarkers
also result in changes to the rank order of the image features

because of the non-deterministic nature of the algorithm, the
inherent association of features, and the non-linear feature
integration in the modeling process. However, the anatomical
patterns are all coherent with current knowledge on AD.

Supervised by diagnosis labels, our model also maintains
discriminative power. For CN vs. AD classification task,
using image features alone, our model reaches state-of-the-art
accuracy, compared with the 86% accuracy reported in [12]
using a multivariate approach based on sMRI features, and
is further improved when combining image-genetics features.
The increase is particularly obvious in the CN vs. MCI vs. AD
classification, but only modest in CN vs. AD classification.
Because of the relatively larger neuroanatomical difference
between CN and AD, the neuroanatomical biomarkers suffice
to capture the class differences and the additive predictive
value of genetic biomarkers becomes less important. But we
want to emphasize that the genetic features contribute to the
discovered topics with non-zero coefficients. For the MCI
stable vs. progression to AD classification, our accuracy of
around 71% is higher than a previous study [13] which re-
ported an optimal accuracy of 64.4% using multiple methods,
but on a slightly different sample in ADNI. Therefore, our
proposed model, primarily designed for generative modeling
of interpretable feature patterns, can achieve competitive dis-
criminative performance in predicting MCI conversion.

Compared to discriminative models, the topics discovered
by our generative modeling open up new ways for disease
understanding. Compared to basic (unsupervised) LDA, our
sLDA model provides a more robust and discriminative char-
acterization, benefiting from the guidance of supervised popu-
lation stratification. Our sLDA model graphical representation
is flexible and can easily accommodate and test additional
interactions and features, which could potentially further boost
classification performance, and provide better characterization.
We could introduce functional MRI, cognitive tests or vascu-
lar measures [29], to investigate structure-function, structure-
cognition or structure-vasculature relationships. Association
of individual expressions of patterns from the discriminative
topics with disease state is under investigation. As future work,
the proposed model will be extended to a longitudinal design
with more timepoints which could help discover patterns that
are associated with intra-subject longitudinal disease progres-
sion.
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